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Numerical evidence for divergent Burnett coefficients
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In previous papers@Phys. Rev. A41, 4501 ~1990!; Phys. Rev. E18, 3178 ~1993!#, simple equilibrium
expressions were obtained for nonlinear Burnett coefficients. A preliminary calculation of a 32-particle
Lennard-Jones fluid was presented in the previous papers. Now, sufficient resources have become available to
address the question of whether nonlinear Burnett coefficients are finite for soft spheres. The hard sphere case
is known to have infinite nonlinear Burnett coefficients~i.e., a nonanalytic constitutive relation! from mode-
coupling theory. This paper reports a molecular dynamics caclulation of the third order nonlinear Burnett
coefficient of a Lennard-Jones fluid undergoing color flow, which indicates that this term diverges in the
thermodynamic limit.@S1063-651X~99!00511-5#

PACS number~s!: 05.20.2y, 05.60.2k
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I. INTRODUCTION

Ever since the Green-Kubo formalism for calculating li
ear transport coefficients was developed, there has bee
terest in a corresponding theory for the nonlinear Burn
coefficients. The discovery of long-time tails in the veloc
autocorrelation function by Alder and Wainwright@1# indi-
cated that hydrodynamic transport coefficients do not exis
two dimensions, but do exist in three dimensions. By app
ing mode-coupling theories, Ernstet al. @2# showed that the
relation between stress and strain rate should bePxy
}ugu lnugu for hard disks andPxy52hg1cugu3/2 for hard
spheres, which are nonanalytic constitutive relations. Sim
results were obtained by Kawasaki and Gunton@3# for in-
compressible fluids~which is a particular case of a har
sphere fluid!, although criticized later by Breyet al. @4#. It
should be pointed out that the linear Burnett coefficients
known to be divergent@5,6#, and, in light of the linear coef-
ficient results, it is generally assumed that the nonlinear
efficients should be divergent as well for soft particle s
tems. Breyet al. @4# claimed to show the divergence o
nonlinear coefficients in a followup paper~Ref. @11# in that
paper!, yet this paper never appeared in the literature. The
fore, there is considerable interest in a molecular dynam
simulation of a soft particle system to see if the hard sph
results generalize.

In a paper by Evans and Lynden-Bell@7#, equilibrium
fluctuation expressions for inverse Burnett coefficients w
derived for the color conductivity problem. The coefficien
Bi give a Taylor series representation of a nonlinear trans
coefficientL, in terms of the thermodynamic forceF. Thus if
a thermodynamic fluxJ is written in terms of the coeffi-
cient’s defining constitutive relation as^J&5L(F)F, then the
Burnett coefficients are related byL(F)5B01B1F1B2F2

1•••. In order to derive closed form expressions for t
Burnett coefficients, it was found necessary to work in
Norton ensemble, in which the fluxJ, rather than the ther
modynamic forceF, was the independent variable. The co
stitutive relation in this case iŝ F&5L(J)J5B01B1J
1•••. In the thermodynamic limit, we may writeL(J)
5L21(J), and so the nonlinear Burnett coefficients can
computed by inverting the series.
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Evans and Lynden-Bell@7# applied constant current dy
namics to a canonical ensemble with the currents distribu
about an average currentJ0. This allowed the derivation of a
transient time correlation function for the nonequilibriu
phase averagêF&. It was then a simple matter to compu
the derivatives of̂ F& with respect to the average currentJ0,
as the constant current propagator commutes with the de
tive operator. However, this method appeared to be limi
to color currents, for which an appropriate canonical dis
bution could be found. In a previous paper@8# we show that
this method can be applied to the situation of an arbitr
thermodynamic flux. Later@9#, we showed that this transien
time correlation expression can be expressed in terms o
average over an equilibrium simulation, reducing the cal
lation required by two orders of magnitude. At the tim
computational resources were not sufficient to estab
whether this expression is finite in the limit ast→`, or in
the thermodynamic limit. In this paper, we present compu
tional results of color conductivity in a Lennard-Jones s
tem, harnessing four supercomputers simultaneously ov
period of 18 months that show distinct evidence thatB2
5`.

FIG. 1. Transient time correlation function for the 32-partic
system withQl54.74 at 1.3231011 time steps.
5175 © 1999 The American Physical Society
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In order to avoid confusion, it should be noted that t
term ‘‘color diffusion’’ is sometimes used in the sense of t
diffusion of color labels attached to otherwise color bli
particles in the complete absence of applied external fie
@10#. In this approach, if the color label attached to a parti
is ignored, the system remains at equilibrium. This is ma
festly a linear process. In the model we consider all the p
ticles interact with an external color sensitive external fie
and this allows the possibility of a nonlinear response
might also be pointed out that the color field we consid
here is independent of both position and time, so that
linear Burnett coefficients do not play a role.

II. SIMULATION

The simulation was performed using the color conduc
ity model described in Evans and Lynden-Bell@7#. The in-
termolecular potential was taken to be the Lennard-Jones
tential, which has an attractive component due to van
Waals interaction, and a repulsive hard core that goes
r 212:

V~r !54«F S s

r D 12

2S s

r D 6G .

FIG. 2. Integral of the TTCF for the 32-particle system wi
Ql54.74 at 1.3231011 time steps.

FIG. 3. Transient time correlation function for the 32-partic
system withQl51.4 at 2.231011 time steps.
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In what follows, every quantity will be given in reduce
units, in which«5s5m51. This model has been well stud
ied, and can be related physically to some noble gases
argon.

The system was simulated at three different system s
~32, 108, and 256 particles! using a periodic boundary con
dition to minimize boundary effects. The state point chos
had a temperature of 1.08 and density of 0.85. Consider
information was already known about this system at t
state point@11#.

The equations of motion are just that of the Nose´-Hoover
thermostat, with an additional flux stating term. This gen
ates a canonical ensemble

q̇i5
pi

m
,

ṗi5Fi1ei x̂l2api ,

ȧ5
3NkB

Qa
~T2T0!,

FIG. 4. Integral of the TTCF for the 32-particle system wi
Ql51.4 at 2.231011 time steps.

FIG. 5. Transient time correlation function for the 108-partic
system at 1.131011 time steps.
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l̇5
N

Ql
@J2J~ t50!#, ~1!

whereFi are the intermolecular forces,ei561 are the color
charges, T5((mpi

2/3NkB), T05^T&, and J
5( i(pxiei /Nm) is the color current.

The feedback parameterQl was chosen equal to 4.74 fo
the 108-, the 256-, and one of the 32-particle runs. Beca
Ql should be an extensive quantity, the 32-particle run w
repeated atQl53234.74/10851.4. The Nose´-Hoover ther-
mostat parameterQa was chosen to be 0.31N. The values of
these parameters were chosen to give optimal convergen
the linear response function. There is no real reason for th
to be optimal for nonlinear response functions.

When the flux is fixed in this manner, the ensemble
termed a Norton ensemble. When the thermodynamic fo
is fixed, then it is termed a The´venin ensemble by analog
with electrical circuits@11#. Evons has recently given a sta
tistical mechanical proof of the macroscopic equivalence
the Norton-The´venin representations of a nonequilibriu
system@12#.

Recall that transient time correlation functions~TTCFs!
for evaluating the inverse cubic Burnett coefficientB2 were
given in Ref.@7#:

FIG. 6. Integral of the TTCF for the 108-particle system at 1
31011 time steps.

FIG. 7. Transient time correlation function for the 256-partic
system at 331010 time steps.
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^DJ2&2E0

`

Šl~s!l~0!~DJ22^DJ2&!‹ds, ~2!

wherel(s) is the additional phase variable@defined in Eq.
~1! corresponding to a color force of a system at times along
a trajectory#, andDJ5J2J0 whereJ0 is the color current at
the origin of that trajectory. As the system is at equilibriu
~in the canonical ensemble!, after a correlation time has
passed, the system’s configuration is effectively randomiz
and may be used as a new trajectory origin. The correlati
between different successive states of the equilibrium sim
lation can be easily seen by examining something like
velocity autocorrelation function~see Fig 7.1 of Ref.@13#,
for examples!. The correlation time for this system is abo
1.

III. RESULTS

Because the relevant quantity is an ensemble averag
very effective parallelization strategy is to run a separ
copy of the system on each processor, compute the TTCF
each processor, then average over the entire set of pro
sors, weighing for the number of time steps executed on e
processor. Further computational details of this experim

FIG. 8. Integral of the TTCF for the 256-particle system
331010 time steps.

FIG. 9. Integral of the TTCF for the linear transport coefficien
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were reported in Ref.@14#. While the results of this experi
ment would appear meager compared with the computati
resources used to compute it, it should be pointed out
this computation was conducted at the lowest priority
these machines, using idle CPU cycles.

Having a set of approximations also allows one to cal
late the standard error of the TTCF. These are shown as e
bars in Figs. 1–8.

The TTCF’s and their integrals are shown in Figs. 1–
There is a considerable system size dependence, indic
that the nonlinear Burnett coefficients diverge in the therm
dynamic limit, although the individual TTCFs remain finit
It can be shown, using the lemma proved in the Appendix
Ref. @9#, that the inverse nonlinear Burnett coefficients giv
by Eq.~2! should be intensive. As well as this, the 32 partic
simulation shows strong evidence of a long time tail~Fig 1
and 2! whenQl is increased~softening the current-statting!,
leading to a divergence in the integrals ast→`. For com-
parison, the transient time correlation function for the line
coefficient is shown in Fig. 9, showing convergence with
t55.
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IV. CONCLUSION

This work presents strong numerical evidence in favor
infinite nonlinear Burnett coefficients for soft spheres as
the case for hard spheres. However, the Taylor series ex
sion of the constitutive relation presented in Ref.@8# can also
be derived forJ0Þ0, which, if the hard sphere model i
anything to go by, should be finite. These can be used
compute the constitutive relation into the nonlinear regio
However, it will probably be at least another decade bef
these calculations become practical.
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