PHYSICAL REVIEW E VOLUME 60, NUMBER 5 NOVEMBER 1999

Numerical evidence for divergent Burnett coefficients
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In previous paper$Phys. Rev. A41, 4501 (1990; Phys. Rev. E18, 3178(1993], simple equilibrium
expressions were obtained for nonlinear Burnett coefficients. A preliminary calculation of a 32-particle
Lennard-Jones fluid was presented in the previous papers. Now, sufficient resources have become available to
address the question of whether nonlinear Burnett coefficients are finite for soft spheres. The hard sphere case
is known to have infinite nonlinear Burnett coefficiefiit®., a nonanalytic constitutive relatipfrom mode-
coupling theory. This paper reports a molecular dynamics caclulation of the third order nonlinear Burnett
coefficient of a Lennard-Jones fluid undergoing color flow, which indicates that this term diverges in the
thermodynamic limit[S1063-651X%99)00511-5

PACS numbdss): 05.20-y, 05.60—k

I. INTRODUCTION Evans and Lynden-Bell7] applied constant current dy-
namics to a canonical ensemble with the currents distributed
Ever since the Green-Kubo formalism for calculating lin- about an average curredy. This allowed the derivation of a
ear transport coefficients was developed, there has been iransient time correlation function for the nonequilibrium
terest in a corresponding theory for the nonlinear Burnethhase averagéF). It was then a simple matter to compute
coefficients. The discovery of long-time tails in the velocity the derivatives of F) with respect to the average currelt
autocorrelation function by Alder and Wainwrigftt] indi- a5 the constant current propagator commutes with the deriva-

cated that hydrodynamic transport coefficients do not exist iy gperator. However, this method appeared to be limited
two dimensions, but do exist in three dimensions. By applyy, cojor currents, for which an appropriate canonical distri-

ing mode-coupling theories, Ernest al. [2] showed that the bution could be found. In a previous pagéi we show that

relation between stress and strain rate should this method can be applied to the situation of an arbitrary

x|y|In|y| for hard disks andP,,= — ny+c|y|*? for hard . . :
spheres, which are nonanalytic constitutive relations. Similaﬁhermodynamlc flux. Latejd], we showed that this transient

results were obtained by Kawasaki and Gun8h for in- ime correlation exprggsipn can be e_xpressed.in terms of an
compressible fluidgwhich is a particular case of a hard average over an equilibrium S|mulat|on,_reducmg the c_alcu-
sphere fluigl, although criticized later by Brewt al. [4]. It  lation required by two orders of magnitude. At the time,
should be pointed out that the linear Burnett coefficients aréomputational resources were not sufficient to establish
known to be diverger{t5,6], and’ in ||ght of the linear coef- whether this expression Is finite in the limit as>, or In
ficient results, it is generally assumed that the nonlinear cothe thermodynamic limit. In this paper, we present computa-
efficients should be divergent as well for soft particle sys-tional results of color conductivity in a Lennard-Jones sys-
tems. Breyet al. [4] claimed to show the divergence of tem, harnessing four supercomputers simultaneously over a
nonlinear coefficients in a followup papéref.[11] in that  period of 18 months that show distinct evidence tifat
papel, yet this paper never appeared in the literature. There= .
fore, there is considerable interest in a molecular dynamics
simulation of a soft particle system to see if the hard sphere o3
results generalize.

In a paper by Evans and Lynden-B¢ll], equilibrium
fluctuation expressions for inverse Burnett coefficients were= .2} 1
derived for the color conductivity problem. The coefficients
B, give a Taylor series representation of a nonlinear transport
coefficientL, in terms of the thermodynamic forée Thus if
a thermodynamic fluxJ is written in terms of the coeffi-
cient’'s defining constitutive relation 438)=L(F)F, then the
Burnett coefficients are related hy(F)=B,+B;F +B,F?
+---. In order to derive closed form expressions for the
Burnett coefficients, it was found necessary to work in the &
Norton ensemble, in which the fluk rather than the ther-
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modynamic forceF, was the independent variable. The con- =%, s p p s o
stitutive relation in this case iSF)=/L(J)J=By+15,] .

+---. In the thermodynamic limit, we may writ&(J)

=L"%(J), and so the nonlinear Burnett coefficients can be FIG. 1. Transient time correlation function for the 32-particle
computed by inverting the series. system withQ, =4.74 at 1.3X 10! time steps.
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FIG. 2. Integral of the TTCF for the 32-particle system with

1 FIG. 4. Integral of the TTCF for the 32-particle system with
Q,=4.74 at 1.3X 10" time steps.

Q,=1.4 at 2.% 10" time steps.

In order to avoid confusion, it should be noted that the . . . .
term “color diffusion” is sometimes used in the sense of theIn _Wh‘_"‘t fol!ows, every quantl_ty will be given in reduced
diffusion of color labels attached to otherwise color blind UMitS, in whiche =c=m=1. This model has been well stud-
particles in the complete absence of applied external field!€d: @nd can be related physically to some noble gases like

[10]. In this approach, if the color label attached to a particleargon' . . .
is ignored, the system remains at equilibrium. This is mani- The system was simulated at three different system sizes

festly a linear process. In the model we consider all the par@?’ 108, gnq 2_56 particlsising a periodic bound_ary con-

ticles interact with an external color sensitive external field dition to minimize boundary effects. The state point chosen
and this allows the possibility of a nonlinear response. | ad a temperature of 1.08 and density of 9'85' Considerable
might also be pointed out that the color field we consided"formation was already known about this system at that

here is independent of both position and time, so that thétau?1 pomt[ll_]. f . : hat of the K
linear Burnett coefficients do not play a role. The equations of motion are just that of the ver

thermostat, with an additional flux stating term. This gener-

L. SIMULATION ates a canonical ensemble

The simulation was performed using the color conductiv- P

ity model described in Evans and Lynden-Bil. The in- 4=
termolecular potential was taken to be the Lennard-Jones po-
tential, which has an attractive component due to van der

Waals interaction, and a repulsive hard core that goes as pi=F,+ex\—ap;,
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FIG. 3. Transient time correlation function for the 32-particle  FIG. 5. Transient time correlation function for the 108-particle
system withQ, =1.4 at 2. 10" time steps. system at 1.X 10" time steps.



PRE 60 NUMERICAL EVIDENCE FOR DIVERGENT BURNET ... 5177

12 | 1

(MEMO)(AT? — (AT?))ds

T

0
11
0

3(8N) f;

t

FIES._6. Integral of the TTCF for the 108-particle system at 1.1 FIG. 8. Integral of the TTCF for the 256-particle system at
X 10" time steps. 3x 10 time steps.
f= N [3-3(t=0 1 3N
o [I-3t=0], (1) 5, 2NB
(A3%)?
whereF; are the intermolecular forces,= =1 are the color
charges, T=ZX(m p,2/3NkB), To=(T), and J where\(s) is the additional phase variabjdefined in Eq.
=3.(py;e;/Nm) is the color current. (1) corresponding to a color force of a system at tsrzong
The feedback parameté), was chosen equal to 4.74 for @ trajectory, andAJ=J—J, whereJ, is the color current at
the 108-, the 256-, and one of the 32-particle runs. Becaus&e origin of that trajectory. As the system is at equilibrium
Q, should be an extensive quantity, the 32-particle run wasin the canonical ensembleafter a correlation time has
repeated a@, = 32X 4.74/108= 1.4. The NoseHoover ther- ~ Passed, the system’s conﬂgurgﬂon is eff_e(_:nvely randomged,
mostat paramete,, was chosen to be 0.8l The values of and may be used as a new trajectory origin. The correlations
these parameters were chosen to give optimal convergence Bgtween different successive states of the equilibrium simu-
the linear response function. There is no real reason for thedgtion can be easily seen by examining something like the
to be optimal for nonlinear response functions. velocity autocorrelation functioisee Fig 7.1 of Ref[13],
When the flux is fixed in this manner, the ensemble isfor examples The correlation time for this system is about
termed a Norton ensemble. When the thermodynamic forcé-
is fixed, then it is termed a Thenin ensemble by analogy
with electrical circuit§11]. Evons has recently given a sta- lll. RESULTS
tistical mechanical proof of the macroscopic equivalence of
the Norton-Theenin representations of a nonequilibrium
system[12].
Recall that transient time correlation functioiETCF9
for evaluating the inverse cubic Burnett coefficiéht were
given in Ref.[7]:

J:O\(S)MO)(AJZ—<A32>)>ds, (2

Because the relevant quantity is an ensemble average, a
very effective parallelization strategy is to run a separate
copy of the system on each processor, compute the TTCF on
each processor, then average over the entire set of proces-
sors, weighing for the number of time steps executed on each
processor. Further computational details of this experiment
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FIG. 7. Transient time correlation function for the 256-particle
system at X 10 time steps. FIG. 9. Integral of the TTCF for the linear transport coefficient.
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were reported in Ref.14]. While the results of this experi- IV. CONCLUSION

ment would appear meager compared with the computational

resources used to compute it, it should be pointed out that This work presents strong numerical evidence in favor of

this computation was conducted at the lowest priority oninfinite nonlinear Burnett coefficients for soft spheres as is

these machines, using idle CPU cycles. the case for hard spheres. However, the Taylor series expan-
Having a set of approximations also allows one to calcusijon of the constitutive relation presented in H&l.can also

late the s_tandard error of the TTCF. These are shown as erngg derived fordo#0, which, if the hard sphere model is

bars in Figs. ,1_8- o o anything to go by, should be finite. These can be used to
The TTCF's and their integrals are shown in Figs. 1-8..,m0te the constitutive relation into the nonlinear region.

;rhhetﬁ IS a (I:_onS|deBrabIettsysteffr_n_S|zte ggpendenctzﬁ, 'trr:d'cat'rl'-%wever, it will probably be at least another decade before
at the nonlinear Burnett coefficients diverge in the thermos, . - -1 lations become practical,

dynamic limit, although the individual TTCFs remain finite.
It can be shown, using the lemma proved in the Appendix of
Ref.[9], that the inverse nonlinear Burnett coefficients given

by Eg.(2) should be intensive. As well as this, the 32 particle ACKNOWLEDGMENTS
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